2014年03月05日13:26
将实现以往100倍的感度
有望在几年内实用化的传感器方面,采用石墨烯的开发案例远远高于CNT(图3)。感度和响应性达到现有技术100倍以上的情况屡见不鲜。
图3:利用石墨烯的传感器将实现出色的性能 本图为利用石墨烯的传感器开发示例。诺基亚的湿度传感器响应性非常快(a)。石墨烯MEMS共振器正针对微量材料的测量用途进行开发(b)。硅环型光调制器可将通信性能提高至数十倍(c)。(图(c)由NTT提供,图片由各公司拍摄) |
例如,诺基亚2013年11月发布的柔性湿度传感器的响应性还不到0.1秒,达到了10秒以上的现有产品的100多倍。“也许可用于利用呼吸的用户界面”(诺基亚)等,有望扩大新用途。
电池和电容器:面向电极量产“魔法粉”
有望继透明导电膜和传感器之后实现实用化的是电池类。可作为燃料电池、双电层电容器(EDLC)、锂离子充电电池的电极导电辅助剂使用(图4)。NEC已开始面向锂离子充电电池量产直径为2~5nm、介于CNT和富勒烯中间的材料“碳纳米角”。号称是能“大幅提高性能的魔法粉”。
图4:纳米碳材料在电池领域也大展身手 本图为CNT在燃料电池、双电层电容器及电容器等领域的利用方法以及利用CNT提高的性能。((a)由九州大学拍摄,(b)和(c)由日本贵弥功拍摄。) |
日本贵弥功公司在EDLC“纳米混合电容器(NHC)”中,利用多层CNT实现了约30Wh/L的能量密度,是现有产品的3倍。计划2015年之前量产。
该公司预计,普通电容器的电极也将使用单层CNT(图4(c))。单层CNT的合成利用日本产业技术综合研究所和日本瑞翁(Zeon)等开发的“超速成长(SG)法”。日本贵弥功理事、技术本部基础研究中心长玉光贤次介绍说,“利用SG法合成的单层CNT杂质少,因此无需粘合剂即可与铝集电体粘合”。这样的话,(1)铝集电体与CNT间的接触电阻减少,输出密度提高至3倍;(2)对高电压的耐性提高,能量密度也随之提高。(作者:野泽 哲生,日经技术在线!供稿)