人民网

人民网>>财经>>中日技术产业信息网

电动车辆性能将超过汽油车,凭材料革新突飞猛进【3】

2014年01月24日09:59    

大发开发液体燃料

在普遍认为PEFC将会成为FCV燃料电池的主流的情况下,大发工业则提出了不同的观点。该公司认为,“考虑到易用性,液体燃料才是最佳选择”。在2013年的东京车展上,展出了概念车“FC 凸 DECK”(图5)。这辆汽车通过更换燃料瓶的方式补充液体燃料。设想使用的燃料是水合肼和二氨基脲。

图5:改进液体燃料

大发工业的FCV概念车“FC 凸 DECK”在“第43届东京车展2013”上首度展露真容。使用无需贵金属的液体燃料是最大的特点。

与水合肼相比,二氨基脲没有毒性,更易于储存和使用。但输出功率较低,因此,目前的开发是2种燃料并行。因为电解质膜使用的是阴离子交换膜,所以催化剂可以采用镍类和铁类。

马达:无镝一举解决资源问题和高性能化

与燃料电池相同,马达也背负着资源风险。这是因为左右马达性能的磁铁大量使用稀土。面向纯电动汽车的马达必不可少的钕磁铁含有重量比约为8%的稀土镝(Dy)。

钕磁铁使用镝是为了在170~200℃的高温下维持较高的矫顽力。但镝不仅产量主要集中在中国,而且会对磁铁的性能产生影响。日本物质材料研究机构(NIMS)研究员磁性材料组组长宝野和博说:“使用镝的话,会使磁铁能够对外做功的最大值,也就是最大能量密度大幅降低。”因此,如果能够制造出“无镝”的钕磁铁,资源和性能两大课题即可迎刃而解。

无镝钕磁铁的开发日趋活跃,昭和电工已于2013年11月底面向FA投入量产。其性能与添加了4%的镝的钕磁铁不相上下。

钕磁铁的矫顽力随晶体粒径的微细化增加(图6)。宝野等人与丰田合作,正在着手开发晶体粒径不到1μm的钕磁铁。现在,晶体粒径为0.2μ~0.3μm的试制品的矫顽力达到了约2T。“符合纯电动汽车需要的2.5~3T的实现已经进入了视野”(宝野)。在这项研究中,缩小晶体粒径采用了热加工处理的方式。处理得到了大同电子的协助。

图6:缩小晶体粒径,不依靠镝提高矫顽力

钕磁铁具有晶体粒径越小,越容易提高矫顽力的倾向。热加工是使晶体粒径小于1μm的有效方法。(图:《日经电子》根据日本物质材料研究机构的资料制作)

除此之外,马达开发还出现了开创新构造的动向。芝浦工业大学工学部电气电子学群电子工学科副教授赤津观正在开发利用GMR(giant magnetoresistance)元件替代线圈的马达(图7)。

图7:利用GMR元件制造自旋电子马达

芝浦工业大学的赤津提出了利用GMR元件制造自旋电子马达的方案。目的是把定子更换为GMR元件,借此提高扭矩密度。(图:《日经电子》根据芝浦工业大学的资料制作)

GMR元件可以利用电流控制磁化方向。使用GMR元件作为马达的定子,使用永磁铁作为转子的“自旋电子马达”已经出现。

铁心采用线圈的传统定子会因为铜线的铜损导致扭矩降低。而采用GMR元件可以消除铜损,从而实现高扭矩马达。马达目前尚处于工作验证阶段,“首先将争取在医疗器械等小型产品中投入实用”(赤津)。

逆变器:替代碳化硅的氧化镓,力争2020年供应样品

逆变器的作用是将大容量充电电池存储的电能从直流转变成交流,带动马达运转。随着充电电池和马达的进化,新一代逆变器的研发也在同步开展。

逆变器小型化和高性能化的关键,掌握在功率半导体的手中。在纯电动汽车用途,新一代功率半导体碳化硅(SiC)公认将成为主流。按照罗姆的推测,驱动马达的逆变器“将从2016~2017年开始配备”碳化硅。开发碳化硅的竞争对手也在为2010年代后期投入实用而相互较劲。

“有一种材料蕴含着超越碳化硅的潜力”——日本信息通信研究机构(NICT)的东胁正高(NICT未来ICT研究所绿色ICT器件尖端开发中心主任)的研究组把目光对准了氧化镓(Ga2O3)。因为与碳化硅和氮化镓(GaN)相比,氧化镓能够以低廉的成本,制造出耐压高、损耗低的功率半导体。

氧化镓有多种晶体结构,β型最为稳定。β型氧化镓的带隙高达4.8~4.9eV。相当于硅的4倍以上,甚至比碳化硅的3.3eV、氮化镓的3.4eV还要高(图8)。而且,左右功率半导体性能的低损耗性的指标“Baliga优值指数”约是碳化硅的10倍、氮化镓的4倍。

图8:利用氧化镓试制MOSFET

信息通信研究机构等研究组正在开发使用β型氧化镓的新一代功率半导体(a)。并对使用该材料的耗尽型MOSFET的工作情况进行了确认(b)。(图:《日经电子》根据信息通信研究机构的资料制作)

东胁等人已经在2012年试制β型氧化镓MESFET(metal semiconductorfield effect transistor),并对工作情况进行了确认。这次又使用该材料试制了耗尽型MOSFET。试制品的耐压为370V,加载+4V的栅极电压时,最大漏电流密度为39mA/mm。漏电流的开关比在100℃下为107左右,在250℃的高温下也保持住了104左右的水平。漏电流开关比的实用水平为106~107上下。

NICT为了推动氧化镓的开发,在2013年12月1日成立了“绿色ICT器件尖端开发中心”。担任主任的东胁意气风发地表示,“我们将从2020年开始供应氧化镓功率半导体样品,在2025年之前正式投入量产”。

 

(责编:值班编辑、庄红韬)

新闻查询  

新闻回顾

      搜索

推荐新闻区

商务部明起对三国进口浆粕征收最高达50.9%的临时税

产业/经营更多>>

能源/环境更多>>

机械/汽车更多>>

数码/IT更多>>

电子/半导体更多>>

工业设计更多>>