2013年06月07日08:39 来源:人民网-财经频道
不使用稀有金属
新型有机EL材料与现有材料有哪些区别?
现有的有机EL材料包括两类,加载电压后发光时间短的“萤光材料”,以及发光时间长的“磷光材料”。而OPERA开发的发光材料,称得上是继二者之后的“第3类发光材料”(OPERA中心主任安达千波矢教授)。
三类材料发光的基本原理相同。都是在正极与负极之间设置厚度约为100纳米(纳为10亿分之1)的发光层,向发光层加载电压。这样一来,正极将发生带正电荷的“空穴”,负极将发生带负电荷的“电子”。
在二者相互吸引,相互结合之后,发光材料将进入具有高能量的“激发态”。随着时间的推移,受到激发的发光材料会逐渐释放能量,恢复到原来的状态。其间,发光材料将释放出光和热。其中的光以图像等形态进入我们的眼睛。
萤光材料与磷光材料相比,荧光材料成本更低,但发光效率差。加载电压产生的电能中,只有25%能够用于发光。剩余的75%则转化成热能释放,因此,电池很快就会耗尽。
磷光材料能够把电能100%用于发光,能够把萤光材料转化成热能舍弃的75%的能量全部转化成光能。发挥转化功能的,是作为添加材料使用的“铂、铱等稀有金属”( OPERA中心主任安达千波矢教授)。
但这些稀有金属价格贵,而且分布不均,采购也不稳定。大量使用难免会增加成本和稳定生产方面的风险。现在,磷光材料的成本还极其高昂,是萤光材料的10倍以上。
萤光材料与磷光材料各有所长,都缺乏决定性的“撒手锏”。这样下去,有机EL的竞争力很难超过液晶。
OPERA开发的是无需使用高成本的稀有金属,即可实现高发光效率的材料。通过改进分子构造,即便不使用稀有金属,该材料也可以把以荧光材料以热能形式释放的75%的电能转化成光能。
开发过程历尽艰辛。OPERA中心主任安达千波矢教授说,第3类材料的原理“早已有之,而且写进了教科书。算不上新鲜玩意儿”。然而,实现不使用稀有金属,仍可实现高效发光的分子构造却并非易事。为此,“(研究人员)从零开始重新审视了作为发光材料的有机物的构造”。
由碳、氧、氢等元素构成的有机物的分子构造种类近乎无限。OPERA在开发过程中,试制了大量分子构造各不相同的材料。经过不懈地研究,终于发现了不使用稀有金属,而且发光效率高的构造。
通过反复对构造进行微调,使用绿色发光材料的有机EL屏试制品的发光效率创下94%的纪录,逼近了100%。
现在,以有机EL新材料的实用和量产化为目标,OPERA又展开了新的行动。
为实现新材料的实用化而设立的有机光电子实用化开发中心。
2013年3月,OPERA创办了“有机光电子实用化开发中心”(i3-OPERA)。i3-OPERA中心副主任八寻正幸表示,该中心“新团结了(原成员以外的)7家材料企业进行着开发”。
在2013年,OPERA还计划创办以提升新材料性能为志向的开发型风险企业。
开发低成本、高发光效率有机EL材料并不只是OPERA。现有有机EL材料的最大生产商——出光兴产同样不遗余力。
与OPERA一样,出光兴产的目标也是在不使用稀有金属的前提下,使容易转化成热能释放的75%的能量转化成光能。该公司技术的特点是在提高发光效率的同时,基本可以沿用现有萤光材料的原子构造。出光兴产电子材料部主任研究员熊均解释说:“实现的方式是在萤光材料与负极之间增加特殊的有机物层。”
因为使用的是现有材料,这种材料具有实用化简单的优点,但课题也不少。最明显的便是能源损耗大。理论发光效率虽然比现有萤光材料高出25%,但也仅为40%,与OPERA实现的94%相比,还不到后者的一半。